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ABSTRACT 

We present a simple method for the nonlinear min-max (or L,) estimation 
problem. The method consists of locally smoothing out the nondifferentiabilities in the 
original L, problem, resulting in an approximate differentiable one that can be 
estimated using standard gradient techniques. The accuracy of the approximation is 
determined by a single parameter, whose choice determines a priori the length of the 
uncertainty interval in the maximal absolute error for the solution of the original L, 
problem. In addition, we present some numerical examples demonstrating the ef- 
ficiency of the method. 

I. INTRODUCTION 

In this paper we develop an algorithm for nonlinear min-max estimation 
problems. Since this problem has discontinuous first order partial derivatives, 
it is considered to be difficult to solve, especially when the fitted curve is 
nonlinear in its parameters. 

It is well known that the statistical properties of the estimated parameters 
depend highly upon the underlying distribution of the error terms in the 
model. Rice and White [lo] presented a study of the effectiveness of different 
norms in estimation models, and discussed the advantages of the min-max 
estimator for certain distributions. 

Efficient algorithms for the min-max problem exist for the case where the 
fitted curve is linear in the estimated parameters. In particular, Barrodale and 
Phillips [l, 21, and Hand and Sposito [6, 71 greatly simplified the use of the 
min-max estimator in the linear case by applying a modification of the simplex 
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method to the primal formulation of the problem as a linear program. There 
are several algorithms for min-max estimation which may be applied in case 
the curve is nonlinear in the estimated parameters (see [S]). 

In this paper we suggest a new algorithm for nonlinear min-max estima- 
tion. This algorithm, which is similar in spirit to the one suggested in [12] for 
the nonlinear L, estimation, approximates the original problem by a continu- 
ously differentiable one. Thus, the approximated problem can be solved using 
efficient gradient (e.g., quasi-Newton) techniques. The accuracy of this ap 
proximation is determined by a single parameter, denoted by fi. Our ap 
proximation replaces the original problem only in some arbitrarily small 
neighborhoods of the points of discontinuous differentiability. Moreover, one 
of our main results, Theorem 3.3, shows that it is possible to choose a priori a 
value for the parameter p in a way that guarantees that the minimal value of 
the objective function of the approximate problem is within a definite 
predetermined distance of the optimal value of the objective of the original 
problem. This implies a priori bounds on the maximal absolute value of the 
error. 

The method suggested here is simple to use and to program, since it only 
requires an unconstrained minimization routine using first derivatives (a 
quasi-Newton method is especially recommended). This last feature makes our 
method applicable even to linear min-max problems, in case there are many 
observations and no special LP code [2] is available. We expect, however, that 
for linear min-max models our method will be less efficient than a specifically 
designed LP code. 

The outline of this article is as follows: Section 2 presents our approxima- 
tions and method. Some properties of these approximations and their implica- 
tions are established and discussed in Section 3. Then, in Section 4, we 
present three nonlinear numerical examples with several parameters, where 
the number of observations varies between 30 and 500. 

2. THE METHOD 

The min-max curve fitting problem can be stated as follows: given N 
observations on the dependent variable y, and the independent variables 
x, = (x,,, Xst, * * * ,X,t )‘, where t = 1,. . . , N, we want to determine the vector 
of kparameters8=(8,,8,,..., Bk)’ which minimizes the function G(8) given 

by 

G(B) = maxlu,l = my ly, - fb,, e)l, t (2.1) 
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where ut is a random error, and we assume that N > k. The function f(x, 0), 
by which we specify the functional dependence between x and y, can be 
linear or nonlinear in x and/or 8. However, for practical purposes, we assume 
that f possesses everywhere continuous first order partial derivatives with 
respect to 8, for every x,, t = 1,. . . , N. Consequently, the sole difficulty in 
finding the “best” vector of parameters, 8*, is caused by G(8) not being 
continuously differentiable, due to the presence of the absolute value and max 
operators in its specification. This property prohibits the use of gradient or 
gradient based techniques in the estimation process. 

The objective function (2.1) can be expressed as follows (see Bertsekas [3]): 

w4 = lu,l+ 9[l%l- l%l 

(2.2) 

where 

9(r)=max(O,r). (2.3) 

In a recent paper Tishler and Zang [ll] suggested to smooth out derivative 
discontinuities which are introduced into piecewise regression models by the 
presence of max (or min) operators. The basic idea in [ll] is to smooth (or 
approximate) the max operator [ 9( r ) = max(O, r )] by the once continuously 
differentiable approximation 

1 
0 if r< -p, 

9i(P, r)= (r + /l)‘/4p if -P<r<P, (2.4) 
r if P d r, 

or by the twice continuously differentiable approximation suggested in Zang 
[13] and given by 

if r< -P, 

3r2 r 3p if 
+sp+z+16 -P<r<P, (2.5) 

if Par, 
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where p is a positive parameter determining the accuracy of the approxima- 
tions. Moreover, using the identity ]r I= 9( r ) + 9( - r ), Tishler and Zang [ 121 
obtained the following once and twice continuously differentiable approxima- 
tions, respectively, to the absolute value operator ]r]: 

A,(p,r)= (r2T+B2)/2j3 

i 

if r< -p, 

if -/3<r<P, (2.6) 
r if P<r, 

and 

k-r if r,< -p, 

The max and absolute value operators and their approximations (2.4)-(2.7) 
are shown in Figures 1 and 2 respectively. It can be easily seen that both 
operators are approximated only in the interval where - p < r 6 p holds, and 
which can be made arbitrarily smah by reducing j?. Furthermore, 

p~~09jCP,r)=9(r)7 j= 1,2, (2.8) 

and 

hm Aj(P, r) = Irl, 
B-0 

j= 1,2. (2.9) 

For additional properties of these approximations see [ 111, [ 121, and [ 131.’ 
We can now approximate problem (2.2) by replacing the max operators 

(the 9’s) with their approximation 9i(/3, r) [or 92(j3, r)] and the absolute 

‘Similar approximations to the max operators that have higher order continuous derivatives are 
found in Zang [13]. 
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FIG. 1. The function q(r) and its approximations. 

FIG. 2. The absolute value function and its approximations. 
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value operators by A,#, r) [or As(/?, r)]. That is, 

j= 1,2, (2.10) 

where Ut, t = l,..., N, are defined by (2.1). 

The function Gj(/3, 8) can be made arbitrarily close to G(B) by an 
appropriate reduction of p, since by (2.8) and (2.9) 

~moGj(PT@)-G(@), j= 1,2, (2.11) 

must hold. Moreover, G,(@, a) is once continuously differentiable, which 
makes possible the use of some efficient gradient techniques, such as quasi- 
Newton methods [9], for its minimization [this is impossible for problem 
(2.1)]. In case f(x,, 0) is twice continuously differentiable with respect to B 
foreveryx,,t=l,..., N, then so will be G,(P, 8). Consequently, it is possible 
to find the minimum of this function using second order techniques such as 
Newton’s method or that suggested by Goldfeld, Quandt, and Trotter [5]. 

Also note that our approximations replace the original problem only in 
some arbitrarily small (via p) neighborhoods of the points where G(e) has 
discontinuous derivatives. Everywhere else Gj( p, 8) = G( 8), and conse- 
quently the original problem remains unchanged. 

It is now possible to find the minimum of G(B) via minimizing G,.(,& B) 
(j= 1 or 2) for some small enough value of P. One can even do better, by 
using the following simple algorithmic scheme: 

Stage 1. Assume 8l and p’ are given. Solve 

mp Gj( P’, e), j=l or2, (2.12) 

starting from 8’. Let e2 be th e solution point to problem (2.12). Take 
p2 < /3’. Go to stage 2. 
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Stage 1 (I = 2,3,. . .). Given 8’ and /3’, solve 

mpGj(fi’,6’) j= 1 or 2, (2.13) 

starting from 6’. Let #+l be the solution point to the problem (2.13). In case 

IV z+l - 8’11 < E, (2.14) 

where E is a small predetermined tolerance, then declare 13’+i as an optimal 
solution and stop. In any other case, take @+’ < /3’ and go to stage 2 + 1. 

In the next section (Theorem 3.4), we will establish convergence of the 
above iterative process. However, for practical purposes it will generally 
suffice to use only one iteration, choosing a value of /3 which is substantially 
smaller than the expected maximal absolute error (MXAE). This recommenda- 
tion will later be reinforced by Theorem 3.3. In our experiments, which are 
described in Section 4, we used the value of 0.1 for /3, which gave satisfactory 
results. The user of the method should be cautioned, however, not to choose 
too small a value for 8; for such a value G,(p, 6) becomes too close to G(B), 
which has discontinuous first order partial derivatives. This ill conditioning 
may cause some numerical difficulties in the solution process. 

3. SOME PROPERTIES OF THE ALGORITHM 

In this section we establish some properties of the approximate objective 
function Gj(P, 8). First we show that it retains some convexity properties in 
case these properties are possessed by G(B): 

THEOREM~.~. Z&~y,-f(x,,19)~beconuexfinction.sof~fort=1,...,N 
(and consequently G(8) be convex). Then for evey p > 0, Gj(P, 0) are 
convex functions of 8. 

PROOF. Theorem 3.1 in [12] implies the convexity of A j( /?, u,(e)) with 
respect to 9. Then Theorem 3.8 in [13] implies the convexity of Gj(/3, 0) with 
respect to 8. 

Note that in case Gj is nonconvex, then several nonglobal local minima 
may exist. In this case the solution obtained depends on the starting point 8l, 
and it is recommended to solve the problem repeatedly using different values 
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for 8’. Next we establish bounds on the difference between the optimal values 
of the approximate and the original problem. First, we need the following 
lemma: 

LEMMA 3.2. The inequalities 

0dG1(~,8)-m~axA,(B,u,(B))~min (3.1) 

and 

O~G,(P,8)-maxA,(P,u,(B))~min (3.2) 

ho& where A,(b, u,(e)), j= I,.% are defined by (2.6) and (2.7) respectively, 

and u,(e)= Y, -fb,,e). 

PROOF. Follows from Proposition 3.3 in Zang [13]. 

Using the above lemma we can prove 

THEOREM 3.3. Let 8* be a global minimum point of G(8), and let Oj be 
global minimum points of Gj( p, fI), j = 1,2, respectively. Then 

O<G,(j3,8,)-G(B*)<min (N:l)p,z] 
( 

(3.3) 

and 

0GG2(j3,8,)-G(8*)<min 3’Nl~‘)p,~). (3.4) 

PROOF. We only prove (3.3). The proof of (3.4) is similar. First we note 
that the inequality 

0 G A,(h u,(e)) - Iu,wl G ~12 (3.5) 
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must hold for every t and all 8. This follows from the inequality 

0~4,(P,+l~lG3/2, (3.6) 

which can be easily shown to hold for every r, since at r = 0 the difference 
between A,(P, r) and the absolute value operator is maximal. Next we note 
that (3.5) and Theorem 1 in Geoffrion [ 41 will imply 

for every 8. Adding now inequalities (3.1), (3.7) and substituting G(8) = 
max, ] ut( e)], we obtain that 

OgG,(/3,8)-G(8)Qmin (N-41)P,P)+i 
( 

(3.8) 

must hold for every 8. Inequality (3.3) follows (3.8) by reapplying Theorem 1 
in [4]. 

We consider Theorem 3.3 as our main result. It shows that it is possible to 
determine a priori the length of the uncertainty interval in G(B*) by the 
choice of the value for /3. For example, if iV 2 5 and j= 1, then by (3.3) 

(3.9) 

must hold, and consequently the length of the uncertainty interval in the 
maximal absolute error (M_XAE), given by G(e*), is 3/3/2. In the same manner, 
an uncertainty interval of llfl/8 for the MUE is obtained whenever N > 8 
and j= 2 are used. ’ This property supports our previous suggestion that in 
many cases one iteration of the algorithmic scheme may be sufficient for 
determining satisfactory parameters, provided /3 was properly chosen. Still, it 
may happen that the objective function G(6) is flat in a neighborhood of 8* 
(due to multicollinearity). In such cases, a value of /3, giving reasonable a 
priori bounds on the length of the uncertainty interval of the MUE, may not 
produce a vector of parameters Bj which is close enough to 8*. This is, 
however, a situation where other methods may produce unsatisfactory results 

‘For j= 1 and N < 5 or j= 2 and N-C 8 the length of this uncertainty interval becomes even 
smaller. 
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as well, and in our case a further decrease of /I, according to the algorithmic 
scheme given in Section 2, may be necessary. 

Let us now establish the convergence of the algorithm scheme, suggested 
at the end of Section 2. 

THEOREM 3.4. Let {/I’} -+ 0 be a sequence of monotonically decreasing 
positive numbers, and assume that 0; is a solution to 

minGj( /3’, e), j= 1,2. (3.10) 

Also let t?‘, 9” be any accumulation points of the sequences {0:} and (0:} 
respectively. Then 

G(e’) = G(e”) = G(e*). (3.11) 

PROOF. The proof follows directly from (3.3) (3.4), and (2.11). 

We now show that a local minimum 8* of G(8) satisfying G(8*) = 

IY~ - f(x,, e*)I f or only one value of 1 < t < N is also a local minimum of 
G,(j3,8), j= 1,2, for a sufficiently small value of p. Thus, using the algorith- 
mic scheme given in Section 2 with (/3’} + 0, it is possible to locate such 
points precisely (as far as the unconstrained subproblem allows) in a finite 
number of steps. 

THEOREM 3.5. Let 8* be a local minimum of G(e), where G(e*) = ly, - 
f(x,, 8*)( for only one value of 1~ r < IV. Then there exists a positive real 
number p such that 8* is a local minimum of Gj( j3,tI) for every fi satisfying 
o<p<p. 

PROOF. We may suppose that 1 u,( e*)I = 1 y, - f( x,, e*)l > 0, since other- 
wise we must have y, - f(x,, 0*) = 0 for all t = 1,. . . ,N. Then, in view of (2.9) 
and by continuity, for sufficiently small p, say 0 </I < fi, we have 
Aj(P> u,(e*) = lu,(e*)l and 

Aj( Pp u,(e*)) = mtaxAj(P. u,(e*)). 
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The remainder of the proof is similar to that of Proposition 3.6 in [13], with 
the modification that the p must satisfy p< B. 

4. NUMERICAL EXAMPLES 

To test the algorithm of Section 2, we solved the three numerical examples 
which were presented in [12]. For ah three, the rit and u, were arbitrarily 
chosen (see details below). Then, using a given set of predetermined parame- 
ters 4 and a randomly generated error, we computed “observed ” yt’s. For 
each example, we performed the estimation for three sample sizes (N = 
30,100,500) and two distributions of the u,‘s (normal and uniform distribu- 
tions), denoted by N(0, a’) and V( - a, a) respectively. 

EXAMPLE 1. 

?I ‘i’it 

i=l 
Y, = 

1+ t e,x,, 

+ u,, 

i=5 

(4.1) 

where 4 = (1.5,1.0,2.7,0.75, - 0.35,0.7)‘, and xi were uniformly distributed 
in the ranges (65,75), (10,20), (0,30), ( - 10,90), (0,2), and (0,4) respectively. 
The distributions of the q’s were N(0, 122), and U( - 15,15). 

EXAMPLE 2. 

Yt = elXft + e,& + 4 
-XltXZt + u, P 
4 + 82 

(4.2) 

where 8 = (1.5,3.0,2.25)‘, and the xi were uniformly distributed in the ranges 
(3,9) and (3,5) respectively. The distributions of the u,‘s were N(0, 8’) and 
V( - 12,12). 
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EXAMPLE 3 (C.E.S. production function). 

where 8=(1.5,0.6,0.5,0.8)‘, and 

(4.3) 

(4.4) 

The distributions of the u, were N(O,3”) and U( - 8,8). 

For each function, sample size, and distribution, we estimated the parame- 
ters three times, using the methods of least absolute errors which was 
developed in [12] (denoted L,), the method of least squares (denoted L,), 
and the min-max algorithm developed in this paper (denoted L,) for j= 1 
(the results for j= 2 were almost identical to those for j= 1, and hence they 
are omitted). For both the L, and L, methods a fixed value of p = 0.1 was 
chosen. In view of the discussion that followed Theorem 3.3, we have that the 
MXAE corresponding to the original problem (2.1) must be within 3p/2 = 0.15 
below the reported value of MXAE for the L, estimator in Tables 1-7. The 
starting points B’ were (1.6,1.1,2.6,0.7, -0.33,0.72), (1.6,2.6,3.6), and 
(1.4,0.5,0.8,0.9) for Examples 1, 2, and 3 respectively.3 The minimization 
was carried out by subroutine VA13AD of the Harwell subroutine library, 
which is a quasi-Newton method [9]. The computations were carried out on 
an IBM 370/168 computer, located at the University of Southern California. 

The results of the experiments are contained in Tables l-6. Beside giving 
the values of the true and estimated parameters, we also report the RMSE, the 
mean absolute error (MAE), the maximal absolute error4 (MXAE), the number 
of function calIs in the optimization process (NF), and the CPU time used for 
the optimization. The two distributions considered are denoted by N (normal) 
and U (uniform) respectively. 

To demonstrate the performance of the algorithmic scheme of Section 2 
and the discussion concerning the choice of p, we show in Table 7 the results 
of an experiment carried out with the above scheme, using Example 1, 
N = 100, j= 1, and errors generated according to the uniform distribution. In 

‘Somewhat more distant 0’ may affect the method (as well as all other methods) to converge to 
104 minima other than the global one. This may happen to Example 1 and 3 which are 
nonconvex minimization problems. We preferred to avoid this phenomenon, 

4That is, G,(O.l, e,), where til is the vector of optimal parameters obtained (applicable, of course, 
to the L, estimator only). 
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Table 7, NABS and NMAX denote the numbers of observations which satisfy 
- /3 < r < fi in (2.6) and (2.4) respectively at the optimal solution. 

The experiments reported in Tables l-6 were designed mainly to evaluate 
the numerical properties of the new min-max method developed in this paper. 
The results reveal that, as expected, the min-max estimator is superior to the 
least absolute error (L, ) and the least squares (L,) estimators for the uniform 
distribution. For the normal distribution, the opposite is true. Finally, the L, 

estimator is somewhat better than the L, for the uniform distribution. All 
these results are in agreement with the statistical properties of the above 
distributions (see Rice and White [lo]). Another conclusion that can be 
inferred from the tables and additional experiments which are not reported 
here is that for large samples the three estimators tend to be similar, if the 
“true” error distribution is either normal or uniform. However, the conver- 
gence of these estimators to the “true” ones is not monotone. The execution 
times obtained for the min-max estimator are quite reasonable. For the normal 
distribution the L, method is in general faster than the L, method, which is, 
in turn, faster than the min-max method. However, for the uniform distribu- 
tion, the min-max may be faster than the L, and L, methods. This is because 
our algorithm does not use all the observations in the computation of the 
derivatives in each iteration. Rather, we exploit the sequential form of (2.10) 
and the fact that if the absolute value of u,(e) is greater than p, then the 
partial derivatives of A .(/3, u,(e)) with respect to 8 are zero. 

Finally, we would l&e to note that in empirical application it is not clear 
when the min-max is superior (or inferior) to the L, or L, estimators, since its 
statistical properties are not yet known. Our experiments show that in small 
samples, the min-max estimator is quite different from the L, and L, 

estimators, and for uniformly distributed errors it is superior to them. Since 
the numerical computation of the min-max estimator does not seem to be 
difficuit, it will be useful to explore its statistical properties further in the 
future. 
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