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ABSTRACT

We present a simple method for the nonlinear min-max (or L) estimation
problem. The method consists of locally smoothing out the nondifferentiabilities in the
original L problem, resulting in an approximate differentiable one that can be
estimated using standard gradient techniques. The accuracy of the approximation is
determined by a single parameter, whose choice determines a priori the length of the
uncertainty interval in the maximal absolute error for the solution of the original L
problem. In addition, we present some numerical examples demonstrating the ef-
ficiency of the method.

I. INTRODUCTION

In this paper we develop an algorithm for nonlinear min-max estimation
problems. Since this problem has discontinuous first order partial derivatives,
it is considered to be difficult to solve, especially when the fitted curve is
nonlinear in its parameters.

It is well known that the statistical properties of the estimated parameters
depend highly upon the underlying distribution of the error terms in the
model. Rice and White [10] presented a study of the effectiveness of different
norms in estimation models, and discussed the advantages of the min-max
estimator for certain distributions.

Efficient algorithms for the min-max problem exist for the case where the
fitted curve is linear in the estimated parameters. In particular, Barrodale and
Phillips [1, 2], and Hand and Sposito [6, 7] greatly simplified the use of the
min-max estimator in the linear case by applying a modification of the simplex
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method to the primal formulation of the problem as a linear program. There
are several algorithms for min-max estimation which may be applied in case
the curve is nonlinear in the estimated parameters (see [8]).

In this paper we suggest a new algorithm for nonlinear min-max estima-
tion. This algorithm, which is similar in spirit to the one suggested in [12] for
the nonlinear L, estimation, approximates the original problem by a continu-
ously differentiable one. Thus, the approximated problem can be solved using
efficient gradient (e.g., quasi-Newton) techniques. The accuracy of this ap-
proximation is determined by a single parameter, denoted by B. Our ap-
proximation replaces the original problem only in some arbitrarily small
neighborhoods of the points of discontinuous differentiability. Moreover, one
of our main results, Theorem 3.3, shows that it is possible to choose a priori a
value for the parameter 8 in a way that guarantees that the minimal value of
the objective function of the approximate problem is within a definite
predetermined distance of the optimal value of the objective of the original
problem. This implies a priori bounds on the maximal absolute value of the
€rToT.

The method suggested here is simple to use and to program, since it only
requires an unconstrained minimization routine using first derivatives (a
quasi-Newton method is especially recommended). This last feature makes our
method applicable even to linear min-max problems, in case there are many
observations and no special LP code [2] is available. We expect, however, that
for linear min-max models our method will be less efficient than a specifically
designed LP code.

The outline of this article is as follows: Section 2 presents our approxima-
tions and method. Some properties of these approximations and their implica-
tions are established and discussed in Section 3. Then, in Section 4, we
present three nonlinear numerical examples with several parameters, where
the number of observations varies between 30 and 500.

2. THE METHOD

The min-max curve fitting problem can be stated as follows: given N
observations on the dependent variable y, and the independent variables

x, =(%,, Xg45.+,% ), Where t =1,...,N, we want to determine the vector
of k parameters 6 =(6,, 0,,...,6,) which minimizes the function G(8) given
by

G(8) = max|u,| = max|y, — f(x,,0)|, (2.1)
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where u, is a random error, and we assume that N > k. The function f(x, #),
by which we specify the functional dependence between x and y, can be
linear or nonlinear in x and /or §. However, for practical purposes, we assume
that f possesses everywhere continuous first order partial derivatives with
respect to 8, for every x,, t =1,...,N. Consequently, the sole difficulty in
finding the “best” vector of parameters, #*, is caused by G(8) not being
continuously differentiable, due to the presence of the absolute value and max
operators in its specification. This property prohibits the use of gradient or
gradient based techniques in the estimation process.

The objective function (2.1) can be expressed as follows (see Bertsekas [3]):

G(8) = |uy|+ q[lug] — 1,

+q[- - +qlluy_i — luy_sl+ qlluyl = luy_ 1] 11,
(2.2)
where

g(r)=max(0,r). (2.3)

In a recent paper Tishler and Zang [11] suggested to smooth out derivative
discontinuities which are introduced into piecewise regression models by the
presence of max (or min) operators. The basic idea in [11] is to smooth (or
approximate) the max operator [g(r)= max(0, r)] by the once continuously
differentiable approximation

0 if r< -8,
a(B.r)={(r+B)°/48 if —B<r<B, (2.4)
T if B<r,

or by the twice continuously differentiable approximation suggested in Zang
[13] and given by

0 if r< — 8,

rt 3r2 r 38
qx(B.7)= _F[P+W+§+T§ if —-B<r<B, (25)

T if B<r,
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where B is a positive parameter determining the accuracy of the approxima-
tions. Moreover, using the identity |r| = g(r)+ g( — r), Tishler and Zang [12]
obtained the following once and twice continuously differentiable approxima-
tions, respectively, to the absolute value operator |r|:

-r if r< —pf,
AB.r)={(r+B%)/28 if —B<r<B, (2.6)
r if B<r,
and
—r if r< — g,

4 2

Adpr={ -t qgt e f —Bsr<h (@7
T if Bxr.

The max and absolute value operators and their approximations (2.4)—(2.7)
are shown in Figures 1 and 2 respectively. It can be easily seen that both
operators are approximated only in the interval where — 8 < r < 8 holds, and
which can be made arbitrarily small by reducing . Furthermore,

Bliinoq,-(ﬁ,r)=q(f), j=1.2, (2.8)

and

Bli_rPOAj(B,r)=|r|, j=1.2. (2.9)

For additional properties of these approximations see [11], [12], and {13).}

We can now approximate problem (2.2) by replacing the max operators
(the g’s) with their approximation g,(8,r) [or q,(8,7)] and the absolute

!Similar approximations to the max operators that have higher order continuous derivatives are
found in Zang [13].
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value operators by A (B, r) [or Ay(B,r)). That is,
G,(8.8)=A(B.u)+q,[B. A (B, 1)~ A (B, u)
+ qj[B’ et Qj[:B’ A,‘(.B’ uy 1) Aj(B’ un_g)

+a[B.A(Buy) - A (B uy )]]..]].

i=1,2, (2.10)

where u,, t =1,...,N, are defined by (2.1).
The function Gy(B,8) can be made arbitrarily close to G(6) by an
appropriate reduction of 3, since by (2.8) and (2.9)

Bnmocj(ﬁ,0)=c(o), i=1,2, (2.11)

must hold. Moreover, G,(8,6) is once continuously differentiable, which
makes possible the use of some efficient gradient techniques, such as quasi-
Newton methods [9], for its minimization [this is impossible for problem
(2.1)). In case f(x,, 8) is twice continuously differentiable with respect to 4
for every x,, t =1,...,N, then so will be Gy(B, #). Consequently, it is possible
to find the minimum of this function using second order techniques such as
Newton’s method or that suggested by Goldfeld, Quandt, and Trotter [5].

Also note that our approximations replace the original problem only in
some arbitrarily small (via 8) neighborhoods of the points where G(#) has
discontinuous derivatives. Everywhere else G(B, 8)=G(0), and conse-
quently the original problem remains unchanged.

It is now possible to find the minimum of G(#) via minimizing G,(B, 6)
(j=1 or 2) for some small enough value of 8. One can even do better, by
using the following simple algorithmic scheme:

Stage 1. Assume 6! and B! are given. Solve

mainG].(,Bl,ﬂ), j=1lor2, (2.12)

starting from 6. Let 62 be the solution point to problem (2.12). Take
B2 < B1. Go to stage 2.
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Stage 1 (1=2,3,...). Given #' and B, solve

moinGj(B',0) j=lor2, (2.13)

starting from 8. Let 8'*! be the solution point to the problem (2.13). In case
161+ — Y <, (2.14)

where ¢ is a small predetermined tolerance, then declare #'*! as an optimal
solution and stop. In any other case, take 8'*! < 8! and go to stage I + 1.

In the next section (Theorem 3.4), we will establish convergence of the
above iterative process. However, for practical purposes it will generally
suffice to use only one iteration, choosing a value of 8 which is substantially
smaller than the expected maximal absolute error (MxaE). This recommenda-
tion will later be reinforced by Theorem 3.3. In our experiments, which are
described in Section 4, we used the value of 0.1 for 8, which gave satisfactory
results. The user of the method should be cautioned, however, not to choose
too small a value for B; for such a value G, (B, 8) becomes too close to G(8),
which has discontinuous first order partlal derivatives. This ill conditioning
may cause some numerical difficulties in the solution process.

3. SOME PROPERTIES OF THE ALGORITHM

In this section we establish some properties of the approximate objective
function G;(B, 8). First we show that it retains some convexity properties in
case these properties are possessed by G(8):

TaeoreM 3.1.  Let |y, — f(x,, 8)| be convex functions of § fort=1,...,N
(and consequently G(8) be convex). Then for every B> 0, G, (B, 0) are
convex functions of 0.

Proor. Theorem 3.1 in [12] implies the convexity of A i(B,u,(8)) with
respect to §. Then Theorem 3.8 in [13] implies the convexity of Gy( B. 8) with
respect to 6.

Note that in case G, is nonconvex, then several nonglobal local minima
may exist. In this case the solution obtained depends on the starting point 6?,
and it is recommended to solve the problem repeatedly using different values
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for 6. Next we establish bounds on the difference between the optimal values

of the approximate and the original problem. First, we need the following
lemma:

Lemma 3.2.  The inequalities

0<01(,3,0)—mtaxAl(,B,u,(ﬂ))<min{w,B} (3.1)

and

0<Gy(8,0) - maxy(B,u(0)) <min{ XNZLE gl (39)

hold, where A (B, u/(8)), j=1,2, are defined by (2.6) and (2.7) respectively,
and u(0)=y, — f(x,,0).

Proor. Follows from Proposition 3.3 in Zang [13].

Using the above lemma we can prove

THEOREM 3.3. Let 6* be a global minimum point of G(8), and let 6, be
global minimum points of G,(B,0), j=1,2, respectively. Then

oscl(p,al)—c(a*)smm{M,%} (3.3)

and

(3.4)

O<G2(B’02)_C(0*)<min{w,l_;ﬁ}‘

16

Proor. We only prove (3.3). The proof of (3.4) is similar. First we note
that the inequality

0< A,(B,u,(6)) ~ |u(0) < B/2 (35)
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must hold for every t and all 8. This follows from the inequality
0<A(B.r)—IrI<B/2, (3.6)

which can be easily shown to hold for every r, since at r = 0 the difference
between A (8, r) and the absolute value operator is maximal. Next we note
that (3.5) and Theorem 1 in Geoffrion [4] will imply

[ SThe

0 < maxAy(8, u(9)) — max|u,(6)] < (3.7)

for every 8. Adding now inequalities (3.1), (3.7) and substituting G(8)=
max,|u,(8)], we obtain that

0<GI(B,0)—G(0)<min{(—N%%,B}+§ (3.8)

must hold for every 6. Inequality (3.3) follows (3.8) by reapplying Theorem 1
in [4].

We consider Theorem 3.3 as our main result. It shows that it is possible to
determine a priori the length of the uncertainty interval in G(8*) by the
choice of the vaiue for 8. For example, if N > 5 and j= 1, then by (3.3)

G1(B,6,) = 3B/2 < G(6*) < Gy(B.6,) (3.9)

must hold, and consequently the length of the uncertainty interval in the
maximal absolute error (MxAE), given by G(6*), is 38/2. In the same manner,
an uncertainty interval of 118/8 for the MxAE is obtained whenever N > 8
and j=2 are used.? This property supports our previous suggestion that in
many cases one iteration of the algorithmic scheme may be sufficient for
determining satisfactory parameters, provided 8 was properly chosen. Still, it
may happen that the objective function G(#) is flat in a neighborhood of #*
(due to multicollinearity). In such cases, a value of B8, giving reasonable a
priori bounds on the length of the uncertainty interval of the MXAE, may not
produce a vector of parameters §; which is close enough to 8*. This is,
however, a situation where other methods may produce unsatisfactory results

2For j=1 and N<5 or j=2 and N < 8 the length of this uncertainty interval becomes even
smaller.
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as well, and in our case a further decrease of 8, according to the algorithmic
scheme given in Section 2, may be necessary.

Let us now establish the convergence of the algorithm scheme, suggested
at the end of Section 2.

TueoreM 3.4. Let {8') = 0 be a sequence of monotonically decreasing
positive numbers, and assume that 0].’ is a solution to

minG(g',6), j=12. (3.10)

Also let °,8” be any accumulation points of the sequences {0} and {6})
respectively. Then

G(8')=C(8”) = G(6%). (3.11)

Proor. The proof follows directly from (3.3), (3.4), and (2.11).

We now show that a local minimum 0* of G(8) satisfying G(6*)=
ly, — f(x,,8*) for only one value of 1<t <N is also a local minimum of
Gi( B.8), j=1,2, for a sufficiently small value of B. Thus, using the algorith-
mlc scheme given in Section 2 with {8} — 0, it is possible to locate such
points precisely (as far as the unconstrained subproblem allows) in a finite
number of steps.

TaeoreM 3.5. Let 8* be a local minimum of G(8), where G(8*)= |y, —
f(x,,0%)| for only one value of 1< 7<N. Then there exists a positive real
number B such that 8* is a local minimum of G (B, 0) for every B satisfying

0<B<8§B.

Proor. We may suppose that |u (8%)| = |y, — f(x,,8%)| > 0, since other-
wise we must have y, — f(x,,0*)=0forall t = 1,...,N. Then, in view of (2.9)
and by continuity, for sufficiently small 8, say 0<fB < B, we have
A (B, u(0*)=|u (%) and

A(B.u,(67)) = maxA (B, u (6%)).
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The remainder of the proof is similar to that of Proposition 3.6 in [13], with
the modification that the 8 must satisfy 8< 8.

4. NUMERICAL EXAMPLES

To test the algorithm of Section 2, we solved the three numerical examples
which were presented in [12]. For all three, the x,, and u, were arbitrarily
chosen (see details below). Then, using a given set of predetermined parame-
ters § and a randomly generated error, we computed “observed ” y,’s. For
each example, we performed the estimation for three sample sizes (N =
30,100,500) and two distributions of the u,’s (normal and uniform distribu-
tions), denoted by N(0, 02) and U( — a, a) respectively.

ExampLE 1.

4
Z 0;x,,

y=———+u, (4.1)

1+ Y 6x,
i=5

where 6= (1.5,1.0,2.7,0.75, — 0.35,0.7)', and x; were uniformly distributed
in the ranges (65, 75), (10,20), (0,30), ( — 10,90), (0,2), and (0,4) respectively.
The distributions of the u,’s were N(0,12%), and U( — 15, 15).

ExamMmPLE 2.

—_p 42 2
y, = 0yxy, + b,x5, + x,%, + U, (4.2)

b
6,+0,

where 8= (1.5,3.0,2.25), and the x; were uniformly distributed in the ranges
(3,9) and (3,5) respectively. The distributions of the u,’s were N(0,8%) and
U(—-12,12).
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ExampLE 3 (C.E.S. production function).
y, =0, [‘92751303 +(1- 02)x§t03] sl U, (4.3)

where §=(1.5,0.6,0.5,0.8)’, and

F1e 550) (10000 5500
(xz:) N[(450)’ ( 5500 8000)] (4.4)
The distributions of the u, were N(0,3%) and U( — 8,8).

For each function, sample size, and distribution, we estimated the parame-
ters three times, using the methods of least absolute errors which was
developed in [12] (denoted L), the method of least squares (denoted L,),
and the min-max algorithm developed in this paper (denoted L) for j=1
(the results for j= 2 were almost identical to those for j=1, and hence they
are omitted). For both the L, and L methods a fixed value of 8 =0.1 was
chosen. In view of the discussion that followed Theorem 3.3, we have that the
MXAE corresponding to the original problem (2.1) must be within 38/2 = 0.15
below the reported value of MxAE for the L_ estimator in Tables 1-7. The
starting points 6' were (1.6,1.1,2.6,0.7, — 0.33,0.72), (1.6,2.6,3.6), and
(14,0.5,0.8,0.9) for Examples 1, 2, and 3 respectively.® The minimization
was carried out by subroutine vA13AD of the Harwell subroutine library,
which is a quasi-Newton method [9]. The computations were carried out on
an IBM 370/168 computer, located at the University of Southern California.

The results of the experiments are contained in Tables 1-6. Beside giving
the values of the true and estimated parameters, we also report the rmsE, the
mean absolute error (MAE), the maximal absolute error? (MxaE), the number
of function calls in the optimization process (NF), and the CPU time used for
the optimization. The two distributions considered are denoted by N (normal)
and U (uniform) respectively.

To demonstrate the performance of the algorithmic scheme of Section 2
and the discussion concerning the choice of 8, we show in Table 7 the results
of an experiment carried out with the above scheme, using Example 1,
N =100, j=1, and errors generated according to the uniform distribution. In

3Somewhat more distant 6 may affect the method (as well as all other methods) to converge to
local minima other than the global one. This may happen to Example 1 and 3 which are
nonconvex minimization problems. We preferred to avoid this phenomenon.

4That is, G1(0.1, 8,), where 6, is the vector of optimal parameters obtained (applicable, of course,
to the L estimator only).
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Table 7, NaBs and Nmax denote the numbers of observations which satisfy
— B < r< Bin (2.6) and (2.4) respectively at the optimal solution.

The experiments reported in Tables 1-6 were designed mainly to evaluate
the numerical properties of the new min-max method developed in this paper.
The results reveal that, as expected, the min-max estimator is superior to the
least absolute error (L, ) and the least squares (L,) estimators for the uniform
distribution. For the normal distribution, the opposite is true. Finally, the L,
estimator is somewhat better than the L, for the uniform distribution. All
these results are in agreement with the statistical properties of the above
distributions (see Rice and White [10]). Another conclusion that can be
inferred from the tables and additional experiments which are not reported
here is that for large samples the three estimators tend to be similar, if the
“true” error distribution is either normal or uniform. However, the conver-
gence of these estimators to the “true” ones is not monotone. The execution
times obtained for the min-max estimator are quite reasonable. For the normal
distribution the L, method is in general faster than the L, method, which is,
in turn, faster than the min-max method. However, for the uniform distribu-
tion, the min-max may be faster than the L, and L, methods. This is because
our algorithm does not use all the observations in the computation of the
derivatives in each iteration. Rather, we exploit the sequential form of (2.10)
and the fact that if the absolute value of u,(8) is greater than 8, then the
partial derivatives of A (B, u,(8)) with respect to 8 are zero.

Finally, we would like to note that in empirical application it is not clear
when the min-max is superior (or inferior) to the L, or L, estimators, since its
statistical properties are not yet known. OQur experiments show that in small
samples, the min-max estimator is quite different from the L, and L,
estimators, and for uniformly distributed errors it is superior to them. Since
the numerical computation of the min-max estimator does not seem to be
difficuit, it will be useful to explore its statistical properties further in the
future.
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